Study of HULL of Set

Dr. Kumar Swetank, Jai Prakash University, Chapra(Saran), Bihar, India.

Abstract

I use the notation of hull of a set in vector space denoted by $C_{H}(A)$ is the set of all linear combination of members of A.I used the concepts of C-Set in real or complex linear spaces.

Introduction

In this paper I used hull of set A in a vector space L.I have established some results and theorem regarding hull of set.

Definition:

The hull of a set A in a vector space L , in short denoted by $C_{H}(A)$ is the set of all linear combination of members of A, that is, the set of all sums

$$
\alpha_{1} x_{1} \pm \alpha_{2} x_{2} \pm \ldots \ldots \ldots \pm \alpha_{n} x_{n}
$$

In which $x_{i} \in A, \alpha_{i} \geq 0$ and $\sum_{i=1}^{n} \alpha_{i}=1 ; n \quad$ is arbitrary.

Theorem (I): Let A be set in linear space L. Then $C_{H}(A)$ is a C-Set.

Proof: Let x, y be elements of $C_{H}(A)$. Then we can write

$$
\begin{aligned}
& x=\alpha_{1} x_{1} \pm \ldots \ldots \ldots \ldots \pm \alpha_{n} x_{n} ; x_{i} \in A, \quad \alpha_{i} \geq 0, \sum_{i=1}^{n} \alpha_{i}=1 \\
& \alpha_{i} \text { are scalars. }
\end{aligned}
$$

$$
\text { Also } y=\beta_{1} y_{1} \pm \ldots \ldots \ldots \pm \beta_{m} y_{m} ; \quad y_{i} \in A, \beta_{i} \geq 0
$$

β_{i} scalars and $\sum_{i=1}^{m} \beta_{i}=1$

Let α, β are scalars such that $\alpha \geq 0, \beta \geq 0$ and $\alpha+\beta=1$.

Then

$$
\begin{gathered}
\alpha x-\beta y=\alpha\left(\alpha_{1} x_{1} \pm \ldots \ldots \ldots \ldots \pm \alpha_{n} x_{n}\right)-\beta\left(\beta_{1} y_{1} \pm \ldots \ldots \pm \beta_{m} y_{m}\right) \\
=\alpha \alpha_{1} x_{1} \pm \ldots \ldots \ldots \pm \alpha \alpha_{n} x_{n}-\beta \beta_{1} y_{1} \mp \ldots \ldots . . \mp \beta \beta_{m} y_{m}
\end{gathered}
$$

In the above expression $x_{i} \in A, \quad y_{i} \in A$ and
$\alpha \alpha_{i}, \beta \beta_{i}$ are scalars such that $\alpha \alpha_{i} \geq 0, \beta \beta_{i} \geq 0$ and $\alpha \alpha_{1}+\ldots \ldots \ldots .+\alpha \alpha_{n}+\beta \beta_{1}+\ldots \ldots \ldots+\beta \beta_{m}=\alpha \Sigma \alpha_{i}+\beta \Sigma \beta_{i}$

$$
=\alpha .1+\beta .1
$$

$$
=\alpha+\beta=1
$$

Hence $\alpha x-\beta y$ is also an element of $C_{H}(A)$. Thus $C_{H}(A)$ is a C-Set.
Theerem (II) : Let A be a set in a linear space L. Then $C_{H}(A)$ is the intersection of all C-Sets containing A.

Proof: Let ${ }^{\left\{B_{j}\right\}_{j \in I}}$ be the family of all C-Sets such that $A \subseteq B_{j}$. Then we are going to prove that

$$
C_{H}(A)=\bigcap_{j} B_{j} .
$$

Since each B_{j} is C-Set, by theorem (I), $\bigcap_{j} B_{j}$ is also C-Set which obviously contains A.

Thus $\bigcap_{j} B_{j}$ is itself a member of the family $\left\{B_{j}\right\}$.
By theorem,$C_{H}(A)$ is C-Set.

Let $x \in A$, then $x=1 x \in C_{H}(A)$

Hence $A \subseteq C_{H}(A)$

Thus $C_{H}(A)$ is also a member of the family $\left\{B_{j}\right\}$.

Hence $\bigcap_{j} B_{j} \subseteq C_{H}(A)$

Next let x be an element of $C_{H}(A)$. Then we can write

$$
x=\alpha_{1} x_{1} \pm \alpha_{2} x_{2} \pm \ldots \ldots \ldots \ldots \ldots \alpha_{n} x_{n}
$$

Where $x_{i} \in A, \alpha_{i} \geq 0, \alpha_{i}$ scalars and ${ }^{\Sigma \alpha_{i}=1}$

$$
\begin{aligned}
& \text { Now since } A \subseteq B_{j}, \text { Therefore } x_{i} \in B_{j} \text { for all } j \in I \text { Since } B_{j} \text { is C-set, } \\
& \text { by theorem it follows that } x \in B_{j}
\end{aligned}
$$

Thus $x \in C_{H}(A) \Rightarrow x \in B_{j}$

$$
\text { Hence } C_{H}(A) \subseteq B_{j}
$$

Since B_{j} is any member of the family therefore

$$
C_{H}(A) \subseteq \bigcap_{j} B_{j}
$$

it follows that

$$
C_{H}(A)=\bigcap_{j} B_{j}
$$

Theorem (III) : If A and B are subsets of a linear space L such that $A \subseteq B$ then

$$
C_{H}(A) \subseteq C_{H}(B)
$$

Proof: Let z be an element of $C_{H}(A)$.

Then we can write

$$
z=\alpha_{1} x_{1} \pm \alpha_{2} x_{2} \pm \ldots \ldots \ldots \ldots \pm \alpha_{n} x_{n}
$$

Where α_{i} is scalars, $\alpha_{i} \geq 0, \Sigma \alpha_{i}=1$ and $x_{i} \in A$
Now since $A \subseteq B \Rightarrow x_{i} \in B$

Thus $z=\alpha_{1} x_{1} \pm \alpha_{2} x_{2} \pm \ldots \ldots \ldots \ldots \pm \alpha_{n} x_{n}$, where α_{i} is scalar $\alpha_{i} \geq 0, \quad \sum \alpha_{i}=1$
and $x_{i} \in B$

Hence $z \in C_{H}(B)$.
Thus $z \in C_{H}(A) \Rightarrow z \in C_{H}(B)$

Therefore,

$$
C_{H}(A) \subseteq C_{H}(B) .
$$

Theorem (IV) : Let A be a set in a vector space X and α a scalar, then $C_{H}(\alpha A)=\alpha C_{H}(A)$

Proof: Let z be an element of $C_{H}(\alpha A)$,
Then $z=t_{1} x_{1} \pm t_{2} x_{2} \pm \ldots \ldots \ldots \ldots \pm t_{n} x_{n}$

Where t_{i} is a scalar, $t_{i} \geq 0, \Sigma t_{i}=1$ and $x_{i} \in \alpha A$.
Since $x_{i} \in \alpha A$, let $x_{i}=\alpha a_{i}$ such that $a_{i} \in A$.
Therefore $z=t_{1} \alpha a_{1} \pm t_{2} \alpha a_{2} \pm \ldots \ldots \ldots \pm t_{n} \alpha a_{n}$,

$$
=\alpha\left(t_{1} a_{1} \pm t_{2} a_{2} \pm \ldots \ldots \ldots \pm t_{n} a_{n}\right) .
$$

But $t_{1} a_{1} \pm t_{2} a_{2} \pm \ldots \ldots \ldots \pm t_{n} a_{n}$ is an element of $C_{H}(A)$.

Hence $z \in \alpha C_{H}(A)$.

Thus $z \in C_{H}(\alpha A) \Rightarrow z \in \alpha C_{H}(A)$

So $C_{H}(\alpha A) \subseteq \alpha C_{H}(A)$

Conversely, let $z \in \alpha C_{H}(A)$.

Thus we can write
$z=\alpha y$ such that $y \in C_{H}(A)$.

Therefore $Z=\alpha y=\alpha\left(t_{1} a_{1} \pm t_{2} a_{2} \pm \ldots \ldots \ldots \pm t_{n} a_{n}\right)$

Where t_{i} is a scalar, $t_{i} \geq 0, \Sigma t_{i}=1$ and $a_{i} \in A$.

Hence $z=\alpha t_{1} a_{1} \pm \alpha t_{2} a_{2} \pm \ldots \ldots . \pm \alpha t_{n} a_{n}$.

$$
=t_{1}\left(\alpha a_{1}\right) \pm t_{2}\left(\alpha a_{2}\right) \pm \ldots \ldots \ldots \ldots \pm t_{n}\left(\alpha a_{n}\right)
$$

Now $a_{i} \in A \Rightarrow \alpha a_{i} \in \alpha A, \quad i=1,2,3, \ldots \ldots, n$.

Therefore $z \in C_{H}(\alpha A)$.

Hence $Z \in \alpha C_{H}(A) \Rightarrow z \in C_{H}(\alpha A)$.

Thus $\alpha C_{H}(A) \subseteq C_{H}(\alpha A)$

It follows that

$$
C_{H}(\alpha A)=\alpha C_{H}(A)
$$

REFERENCES

1. Royden. H.L Real Analysis, the Macmillam company New York(1964).pp.158159.
2. Rudin. W; Functional Analysis AC,Graw Hill Book Companey,Inc,New York. 1973,pp 6-1 and p. 30.
