Study of HULL of Set

Dr. Kumar Swetank,

Jai Prakash University, Chapra(Saran), Bihar, India.

<u>Abstract</u>

I use the notation of hull of a set in vector space denoted by $C_H(A)$ is the set of all linear combination of members of A.I used the concepts of C-Set in real or complex linear spaces.

Introduction

In this paper I used hull of set A in a vector space L.I have established some results and theorem regarding hull of set.

Definition:

The hull of a set A in a vector space L, in short denoted by $C_H(A)$ is the set of all linear combination of members of A, that is, the set of all sums

$$\alpha_1 x_1 \pm \alpha_2 x_2 \pm \dots \pm \alpha_n x_n$$

In which $x_i \in A$, $\alpha_i \ge 0$ and $\sum_{i=1}^n \alpha_i = 1$; *n* is arbitrary.

<u>Theorem (I)</u>: Let A be set in linear space L. Then $C_H(A)$ is a C-Set.

Proof : Let x, y be elements of $C_H(A)$. Then we can write

$$x = \alpha_1 x_1 \pm \dots \pm \alpha_n x_n; \quad x_i \in A, \quad \alpha_i \ge 0, \quad \sum_{i=1}^n \alpha_i = 1$$

 α_i are scalars.

Also
$$y = \beta_1 y_1 \pm \dots \pm \beta_m y_m; \quad y_i \in A, \ \beta_i \ge 0$$

$$\beta_i \text{ scalars and } i=1 \overset{m}{\underset{i=1}{\sum}} \beta_i = 1$$

Let α, β are scalars such that $\alpha \ge 0, \beta \ge 0$ and $\alpha + \beta = 1$.

Then

$$\alpha x - \beta y = \alpha(\alpha_1 x_1 \pm \dots \pm \alpha_n x_n) - \beta(\beta_1 y_1 \pm \dots \pm \beta_m y_m)$$

 $=\alpha\alpha_1x_1\pm\ldots\ldots\pm\alpha\alpha_nx_n-\beta\beta_1y_1\mp\ldots\ldots\mp\beta\beta_my_m$

In the above expression $x_i \in A$, $y_i \in A$ and

 $\alpha \alpha_i, \ \beta \beta_i$ are scalars such that $\alpha \alpha_i \ge 0, \ \beta \beta_i \ge 0$ and $\alpha \alpha_1 + \dots + \alpha \alpha_n + \beta \beta_1 + \dots + \beta \beta_m = \alpha \Sigma \alpha_i + \beta \Sigma \beta_i$

 $= \alpha . 1 + \beta . 1$ $= \alpha + \beta = 1$

Hence $\alpha x - \beta y$ is also an element of $C_H(A)$. Thus $C_H(A)$ is a C-Set.

<u>Theerem (II)</u>: Let A be a set in a linear space L. Then $C_H(A)$ is the intersection of all C-Sets containing A.

<u>Proof</u>: Let ${B_j}_{j \in I}$ be the family of all C-Sets such that $A \subseteq B_j$. Then we are going to

$$C_H(A) = \bigcap_i B_j$$

prove that

Since each B_j is C-Set, by theorem (I), $\bigcap_{j}^{B_j}$ is also C-Set which obviously contains A.

Thus $\bigcap_{j}^{B_{j}}$ is itself a member of the family $\{B_{j}\}$.

By theorem , $C_H(A)$ is C-Set.

Let $x \in A$, then x = 1 $x \in C_H(A)$

Hence
$$A \subseteq C_H(A)$$

Thus $C_H(A)$ is also a member of the family $\{B_j\}$.

$$\bigcap_{j} B_{j} \subseteq C_{H}(A)$$
Hence

Next let x be an element of $C_H(A)$. Then we can write

$$x = \alpha_1 x_1 \pm \alpha_2 x_2 \pm \dots \pm \alpha_n x_n$$

Where $x_i \in A$, $\alpha_i \ge 0$, α_i scalars and $\Sigma \alpha_i = 1$

Now since
$$A \subseteq B_j$$
, Therefore $x_i \in B_j$ for all $j \in I$ Since B_j is C-set,

by theorem it follows that
$$x \in B_j$$

Thus
$$x \in C_H(A) \Rightarrow x \in B_j$$

Hence
$$C_H(A) \subseteq B_j$$

Since B_j is any member of the family therefore

$$C_H(A) \subseteq \bigcap_j B_j$$

it follows that

$$C_H(A) = \bigcap_j B_j$$

Theorem (III): If A and B are subsets of a linear space L such that $A \subseteq B$ then $C_H(A) \subseteq C_H(B)$ **<u>Proof</u>**: Let z be an element of $C_H(A)$.

Then we can write

$$z = \alpha_1 x_1 \pm \alpha_2 x_2 \pm \dots \pm \alpha_n x_n,$$

Where α_i is scalars, $\alpha_i \ge 0$, $\Sigma \alpha_i = 1$ and $x_i \in A$

Now since $A \subseteq B \implies x_i \in B$

Thus $z = \alpha_1 x_1 \pm \alpha_2 x_2 \pm \dots \pm \alpha_n x_n$, where α_i is scalar $\alpha_i \ge 0$, $\Sigma \alpha_i = 1$

and $x_i \in B$

Hence $z \in C_H(B)$.

Thus $z \in C_H(A) \Rightarrow z \in C_H(B)$

Therefore, $C_H(A) \subseteq C_H(B)$

<u>Theorem (IV)</u>: Let A be a set in a vector space X and α a scalar, then $C_H(\alpha A) = \alpha C_H(A)$.

<u>Proof</u>: Let z be an element of $C_H(\alpha A)$,

Then $z = t_1 x_1 \pm t_2 x_2 \pm \dots \pm t_n x_n$

Where t_i is a scalar, $t_i \ge 0$, $\Sigma t_i = 1$ and $x_i \in \alpha A$.

Since $x_i \in \alpha A$, let $x_i = \alpha a_i$ such that $a_i \in A$.

Therefore $z = t_1 \alpha a_1 \pm t_2 \alpha a_2 \pm \dots \pm t_n \alpha a_n$,

$$= \alpha(t_1a_1 \pm t_2a_2 \pm \dots \pm t_na_n)$$

But $t_1a_1 \pm t_2a_2 \pm \dots \pm t_na_n$ is an element of $C_H(A)$.

Hence $z \in \alpha C_H(A)$.

Thus
$$z \in C_H(\alpha A) \Rightarrow z \in \alpha C_H(A)$$

$$S_{O} C_{H}(\alpha A) \subseteq \alpha C_{H}(A)$$

Conversely, let $z \in \alpha C_H(A)$.

Thus we can write

$$z = \alpha y$$
 such that $y \in C_H(A)$.

Therefore $z = \alpha y = \alpha (t_1 a_1 \pm t_2 a_2 \pm \dots \pm t_n a_n)$

Where t_i is a scalar, $t_i \ge 0$, $\Sigma t_i = 1$ and $a_i \in A$

Hence $z = \alpha t_1 a_1 \pm \alpha t_2 a_2 \pm \dots \pm \alpha t_n a_n$.

$$= t_1(\alpha a_1) \pm t_2(\alpha a_2) \pm \dots \pm t_n(\alpha a_n).$$

Now $a_i \in A \implies \alpha a_i \in \alpha A, i = 1, 2, 3, \dots, n.$

Therefore $z \in C_H(\alpha A)$.

Hence
$$z \in \alpha C_H(A) \Rightarrow z \in C_H(\alpha A)$$

Thus
$$\alpha C_H(A) \subseteq C_H(\alpha A)$$

It follows that

$$C_H(\alpha A) = \alpha C_H(A)$$

REFERENCES

- 1. Royden. H.L Real Analysis, the Macmillam company New York(1964).pp.158-159.
- 2. Rudin. W; Functional Analysis AC,Graw Hill Book Companey,Inc,New York.1973,pp 6-1 and p.30.